Question			Answer	Marks	Guidance
1	(a)		force per unit (positive) charge	B1	Allow: $E=\frac{F}{Q}$, where $F=$ force on (a positive) charge Q
-	(b)	(i)	The direction is different (AW)	B1	
		(ii)	$E \propto 1 / r^{2}$ or distance is doubled $\therefore E$ decreases by a factor of 4 electric field strength $=2.0 \times 10^{5}\left(\mathrm{~N} \mathrm{C}^{-1}\right)$	C1 A1	Not: $E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}$ on its own Allow 1 sf answer
	(c)	(i)	$\begin{aligned} & F=\frac{Q q}{4 \pi \varepsilon_{0} r^{2}} \\ & F_{\mathrm{E}}=\frac{1.6 \times 10^{-19} \times 1.6 \times 10^{-19}}{4 \pi \varepsilon_{0} \times\left(5.0 \times 10^{-11}\right)^{2}} \\ & F_{\mathrm{E}}=9.2 \times 10^{-8}(\mathrm{~N}) \end{aligned}$	C1 C1 A1	Allow: 1 mark if $Q=q=1$ giving an answer of $3.6 \times 10^{30}(\mathrm{~N})$
		(ii)	$\begin{aligned} & F_{G}=\frac{6.67 \times 10^{-11} \times 1.67 \times 10^{-27} \times 9.11 \times 10^{-31}}{\left(5.0 \times 10^{-11}\right)^{2}} \\ & F_{G}=4.06 \times 10^{-47}(\mathrm{~N}) \\ & \text { ratio }=9.2 \times 10^{-8} / 4.06 \times 10^{-47} \\ & \text { ratio }=2.3 \times 10^{39} \end{aligned}$	C1 A1	Note: Deduct 1 mark if mass of two electrons or two protons is used, then ecf Possible ecf from (c)(i)
		(iii)1	$\begin{aligned} & \text { wavelength }=2.0 \times 10^{-10}(\mathrm{~m}) \\ & \lambda=h / \mathrm{mv} \\ & p=\frac{6.63 \times 10^{-34}}{2.0 \times 10^{-10}} \\ & p=3.3 \times 10^{-24}\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 C1 A1	Possible ecf for incorrect wavelength Note: Answer to 3 sf is $3.32 \times 10^{-24}\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right)$ Allow: 1 sf answer

Question	Answer	Marks	Guidance
(iii)2	$\begin{aligned} & v=\frac{3.32 \times 10^{-24}}{9.11 \times 10^{-31}}\left(=3.64 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}\right) \\ & E_{\mathrm{k}}=1 / 2 \times 9.11 \times 10^{-31} \times\left(3.64 \times 10^{6}\right)^{2} \\ & E_{\mathrm{k}}=6.0 \times 10^{-18}(\mathrm{~J}) \\ & \text { or } \\ & E_{\mathrm{k}}=1 / 2 \mathrm{p}^{2} / \mathrm{m} \\ & E_{\mathrm{k}}=1 / 2 \times\left(3.32 \times 10^{-24}\right)^{2} / 9.11 \times 10^{-31} \\ & E_{\mathrm{k}}=6.0 \times 10^{-18}(\mathrm{~J}) \end{aligned}$	C1 C1 A1 C1 C1 A1	Possible ecf from (iii)1 Note: Deduct 1 mark if mass of proton is used, then ecf Note: Answer to 3 sf is $6.05 \times 10^{-18}(\mathrm{~J})$ Allow: 1 sf answer Note: Deduct 1 mark if mass of proton is used, then ecf
	Total	15	

Question			Expected Answer	Mark	Additional Guidance
3	(a)	(i)	$\begin{aligned} & E=\frac{V}{d}=\frac{2400}{9.4 \times 10^{-3}} \\ & E=2.55 \times 10^{5}\left(\mathrm{~V} \mathrm{~m}^{-1}\right) \\ & \text { force }=E \times Q=2.55 \times 10^{5} \times 1.60 \times 10^{-19} \\ & \text { force }=4.09 \times 10^{-14}(\mathrm{~N}) \end{aligned}$	C1 A1	Allow 1 mark for $4.1 \times 10^{-n}, n \neq 14$ Allow 2 sf answer of $4.1 \times 10^{-14}(\mathrm{~N})$ Alternative: $\begin{aligned} & F=\frac{V e}{d}=\frac{2400 \times 1.60 \times 10^{-19}}{9.4 \times 10^{-3}} \\ & \text { force }=4.08(5) \times 10^{-14}(\mathrm{~N}) \\ & {\left[\text { Allow: } 4.08 \times 10^{-14}(\mathrm{~N})\right]} \end{aligned}$
		(ii)	$\begin{array}{lll} \mathrm{KE}=e \times V & \text { or } & \mathrm{KE}=F \times d \\ \mathrm{KE}=1.6 \times 10^{-19} \times 2400 & \text { or } & \mathrm{KE}=4.09 \times 10^{-14} \times 9.4 \times 10^{-3} \\ \mathrm{KE}=3.84 \times 10^{-16}(\mathrm{~J}) & \end{array}$	C1 A1	Allow 2 sf answer Possible ecf if answer from (a)(i) is used
		(iii)	$\begin{aligned} & \mathrm{KE}=\frac{1}{2} m v^{2} \\ & v=\sqrt{\frac{2 \times 3.84 \times 10^{-16}}{9.11 \times 10^{-31}}} \\ & \text { speed }=2.9(0) \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	B1	Possible ecf if answer from (a)(ii) is used
	(b)		There is no change (to the gain in KE) work done or $\mathrm{KE}=F d, F$ or E is halved and d is doubled or work done or $K E=V Q$ and V is the same or work done or $K E=V Q$ and this does not depend on distance	M1 A1	
			Total	7	

Question			Answer	Marks	Guidance
4	(a)		Observations: 1. Most of the alpha particles went straight / un-deflected through (the atom(s) / foil) (AW) 2. (Some of the) alpha particles were scattered / repelled / deflected through large angles (AW) Conclusions (QWC mark): - 1 showed that most of the atom is empty space and - 2 showed the existence of small / dense / positive nucleus	M1 M1 A1	Not 'reflected' Allow: The QWC mark even if 'alpha reflected at large angles' is mentioned in 2
	(b)	(i)	The aluminium nucleus has velocity / accelerates / moves to the right There is a repulsive force on the (aluminium) nucleus (to the right) / According to conservation of momentum the (aluminium) nucleus must move (to the right)	B1 B1	Allow: Moves away from the alpha particle
		(ii)	$8.0 \times 10^{6} \times 1.6 \times 10^{-19}={ }_{2}^{1} \times 6.6 \times 10^{-27} \times v^{2} \quad$ (Any subject) speed $=2.0 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Note: Answer to 3 sf is $1.97 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Allow 1 sf answer $2 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
		(iii)	$\begin{aligned} & Q=13 e \text { or } q=2 e \quad \text { or } \quad F=\frac{Q q}{4 \pi \varepsilon_{0} r^{2}} \\ & 270=\frac{13 \times 1.6 \times 10^{-19} \times 2 \times 1.6 \times 10^{-19}}{4 \pi \times 8.85 \times 10^{-12} \times r^{2}} \quad \text { (Any subject) } \\ & \text { distance }=4.7 \times 10^{-15}(\mathrm{~m}) \end{aligned}$	C1 C1 A1	Allow: $F=k_{r^{2}}^{Q q}$, where $k=9 \times 10^{9}$ Note: No credit for using Q and q as 13 and 2

Question		Answer	Marks	Guidance	
		(iv)	$\begin{array}{l}\text { The strong force is attractive } \\ \text { Correct explanation of size / direction of resultant force }\end{array}$	M1	$\begin{array}{l}\text { Allow: } \\ \text { The strong force is repulsive } \\ \text { Correct explanation of size / direction of resultant force }\end{array}$
A1					

