(Question		Answer	Marks	Guidance
1	(a)		force per unit (positive) charge	B1	Allow : $E = \frac{F}{Q}$, where F = force on (a positive) charge Q
	(b)	(i)	The direction is different (AW)	B1	
		(ii)	$E \propto 1/r^2$ or distance is doubled $\therefore E$ decreases by a factor of 4	C1	Not: $E = \frac{Q}{4\pi\varepsilon_0 r^2}$ on its own
			electric field strength = 2.0×10^5 (N C ⁻¹)	A1	Allow 1 sf answer
	(c)	(i)	$F = \frac{Qq}{4\pi a^2}$	C1	
			$F_{\rm E} = \frac{1.6 \times 10^{-19} \times 1.6 \times 10^{-19}}{10000000000000000000000000000000000$	C1	
			$4\pi\varepsilon_{0} \times (5.0 \times 10^{-11})^{2}$ F _E = 9.2 × 10 ⁻⁸ (N)	A1	Allow : 1 mark if $Q = q = 1$ giving an answer of 3.6×10^{30} (N)
		(ii)	$F_{\rm e} = \frac{6.67 \times 10^{-11} \times 1.67 \times 10^{-27} \times 9.11 \times 10^{-31}}{10^{-31}}$	C1	
			$F_{\rm G} = (5.0 \times 10^{-11})^2$ $F_{\rm G} = 4.06 \times 10^{-47} (\rm N)$		Note : Deduct 1 mark if mass of two electrons or two protons is used, then ecf
			ratio = $9.2 \times 10^{-8}/4.06 \times 10^{-47}$		
			ratio = 2.3×10^{39}	A1	Possible ecf from (c)(i)
		(iii)1	wavelength = 2.0×10^{-10} (m) $\lambda = h / mv$	C1	
			$\rho = \frac{6.63 \times 10^{-34}}{2.0 \times 10^{-10}}$	C1	Possible ecf for incorrect wavelength
			$p = 3.3 \times 10^{-24} \text{ (kg m s}^{-1}\text{)}$	A1	Note: Answer to 3 sf is 3.32×10^{-24} (kg m s ⁻¹) Allow: 1 sf answer

Question	Answer	Marks	Guidance
(iii)2	$v = \frac{3.32 \times 10^{-24}}{9.11 \times 10^{-31}} (= 3.64 \times 10^{6} \text{ m s}^{-1})$ $E_{k} = \frac{1}{2} \times 9.11 \times 10^{-31} \times (3.64 \times 10^{6})^{2}$ $E_{k} = 6.0 \times 10^{-18} \text{ (J)}$	C1 C1 A1	Possible ecf from (iii)1 Note: Deduct 1 mark if mass of proton is used, then ecf Note: Answer to 3 sf is 6.05×10^{-18} (J) Allow: 1 sf answer
	$E_{\rm k} = \frac{1}{2} p^2 / m$ $E_{\rm k} = \frac{1}{2} \times (3.32 \times 10^{-24})^2 / 9.11 \times 10^{-31}$ $E_{\rm k} = 6.0 \times 10^{-18} (\rm J)$ Total	C1 C1 A1	Note: Deduct 1 mark if mass of proton is used, then ecf
	Total	15	

Question		ion	Answers	Marks	Guidance
2	(a)		electric field strength = force per unit (positive) charge	B1	Allow: force/charge Not: <i>F</i> /Q
	(b)	(i)	E = V / d 3.0×10 ⁶ = V / 1.3×10 ⁻³	C1	Note: This mark is for correct substitution
			V= 3900 (V)	A1	Allow : 1 mark if answer is 3.9×10^{n} (V), $n \neq 3 - POT$ error
		(ii)	Q = It		
			$Q = 2.7 \times 10^{-9} \times 4.0 \times 10^{-2}$	C1	Note: This mark is for correct substitution
			charge = 1.1×10^{-10} (C) or 1.08×10^{-10} (C)	A1	
		(ii)	number = $1.08 \times 10^{-10} / 1.6 \times 10^{-19}$		
			number = 6.8×10^8 or 6.75×10^8	B1	Possible ecf from (b)(ii)1
		(iii)	energy = VQ		Note: No credit for using 1/2 QV
			energy = $3900 \times 1.08 \times 10^{-10}$	C1	Possible ecf from (b)(ii)1
			energy = 4.2×10^{-7} (J)	A1	
			Total	8	

Question		ion	Expected Answer	Mark	Additional Guidance
3	(a)	(i)	$E = \frac{V}{d} = \frac{2400}{9.4 \times 10^{-3}}$ $E = 2.55 \times 10^{5} \text{ (V m}^{-1)}$ force = $E \times Q = 2.55 \times 10^{5} \times 1.60 \times 10^{-19}$ force = 4.09×10^{-14} (N)	C1 A1	Allow 1 mark for 4.1×10^{-n} , $n \neq 14$ Allow 2sf answer of 4.1×10^{-14} (N) Alternative: $F = \frac{Ve}{d} = \frac{2400 \times 1.60 \times 10^{-19}}{9.4 \times 10^{-3}}$ C1 force = $4.08(5) \times 10^{-14}$ (N) [Allow: 4.08×10^{-14} (N)]
		(ii)	KE = $e \times V$ or KE = $F \times d$ KE = $1.6 \times 10^{-19} \times 2400$ or KE = $4.09 \times 10^{-14} \times 9.4 \times 10^{-3}$ KE = 3.84×10^{-16} (J)	C1 A1	Allow 2 sf answer Possible ecf if answer from (a)(i) is used
		(iii)	KE = $\frac{1}{2}mv^2$ $v = \sqrt{\frac{2 \times 3.84 \times 10^{-16}}{9.11 \times 10^{-31}}}$ speed = 2.9(0) × 10 ⁷ (m s ⁻¹)	B1	Possible ecf if answer from (a)(ii) is used
	(b)		There is no change (to the gain in KE) work done or KE = Fd , F or E is halved <u>and</u> d is doubled or work done or KE = VQ and V is the same or work done or KE = VQ and this does not depend on distance	M1 A1	
			Total	7	

Question 4 (a)		on	Answer	Marks	Guidance
4	(a)		 Observations: 1. <u>Most</u> of the alpha particles went straight / un-deflected through (the atom(s) / foil) (AW) 2. (Some of the) alpha particles were scattered / repelled / deflected through large angles (AW) 	M1 M1	Not 'reflected'
			 Conclusions (QWC mark): 1 showed that most of the <u>atom</u> is empty space and 2 showed the existence of small / dense / positive nucleus 	A1	Allow : The QWC mark even if 'alpha <u>reflected</u> at large an- gles' is mentioned in 2
	(b)	(i)	The aluminium nucleus has velocity / accelerates / moves to the right There is a repulsive force on the (aluminium) nucleus (to the right) / According to conservation of momentum the (aluminium) nucleus must move (to the right)	B1 B1	Allow: Moves away from the alpha particle
		(ii)	$8.0 \times 10^{6} \times 1.6 \times 10^{-19} = \frac{1}{2} \times 6.6 \times 10^{-27} \times v^{2}$ (Any subject) speed = 2.0×10^{7} (m s ⁻¹)	C1 A1	Note: Answer to 3 sf is 1.97×10^7 (m s ⁻¹) Allow 1 sf answer 2×10^7 (m s ⁻¹)
		(iii)	Q = 13e or $q = 2e$ or $F = \frac{Qq}{4\pi\epsilon_0 r^2}$	C1	Allow: $F = k \frac{Qq}{r^2}$, where $k = 9 \times 10^9$
			$270 = \frac{15 \times 1.6 \times 10^{-12} \times 2 \times 1.6 \times 10^{-12}}{4\pi \times 8.85 \times 10^{-12} \times r^2}$ (Any subject) distance = 4.7 × 10 ⁻¹⁵ (m)	C1 A1	Note : No credit for using <i>Q</i> and <i>q</i> as 13 and 2
	1				

C	Question		Answer	Marks	Guidance	
		(iv)	The strong force is attractive	M1	Allow:	
					The strong force is <u>repulsive</u>	M1
			Correct explanation of size / direction of resultant force	A1	Correct explanation of size / direction of resultant force	A1
			Total	12		